Sciener

Gradients

Lesson 10 - How Science Works

Scatter Graphs

Scatter graphs are used to show whether there is a relationship between two sets of data.

The relationship between the data can be described as either linear or non-linear

Scatter Graphs

Scatter graphs are used to show whether there is a relationship between two sets of data.

The relationship between the data can be described as either linear or non-linear

Scatter Graphs

Scatter graphs are used to show whether there is a relationship between two sets of data.

The relationship between the data can be described as either linear or non-linear

Mini Whiteboard Quiz

- Collect a min whiteboard, pen and a paper towel

- Keep a tally of correct answers in the bottom right corner

Testing Your Knowledge

Q. The catagoric variable...

A. is what you keep the same.
B. isn't a thing!
C. is what you change.
D. is how we keep it a fair test.

Testing Your Knowledge

Q. The catagoric variable...

A. is what you keep the same.
B. isn't a thing!
C. is what you change.
D. is how we keep it a fair test.

Testing Your Knowledge

Q. The independent variable...
A. is always continuous. B. is plotted on the y-axis.
C. is what you change.
D. is how we keep it a fair test.

Testing Your Knowledge

Q. The independent variable...
A. is always continuous. B. is plotted on the y-axis.
C. is what you change.
D. is how we keep it a fair test.

Testing Your Knowledge

Q. Where in a results table do you put units?
A. In the headings.
B. After your data.
C. It doesn't matter.
D. Trick question! We don't need units.

Testing Your Knowledge

Q. Where in a results table do you put units?
A. In the headings.
B. After your data.
C. It doesn't matter.
D. Trick question! We don't need units.

Testing Your Knowledge

Q. What type of relationship does
the graph show?
A. Positive, linear relationship.
B. Positive, non-linear relationship.
C. Negative, non-linear relationship.
D. Negative, linear relationship.

Testing Your Knowledge

Q. What type of relationship does the graph show?
A. Positive, linear relationship. B. Positive, non-linear relationship.
C. Negative, non-linear relationship.
D. Negative, linear relationship.

Testing Your Knowledge

Q. What does the graph show?
A. No ice creams were sold at $0^{\circ} \mathrm{C}$.
B. The correlation is negative.
C. The relationship is nonlinear.
D. More ice creams were sold in hot weather.

Temperature (${ }^{\circ} \mathrm{C}$)

Testing Your Knowledge

Q. What does the graph show?
A. No ice creams were sold at $0^{\circ} \mathrm{C}$.
B. The correlation is negative.
C. The relationship is nonlinear.
D. More ice creams were sold in hot weather.

Which is the steepest hill? A or B

Which has the largest gradient? A or B

Which is the steepest line, A or B?

Which of A or B has the largest gradient?

Which is the lowest gradient, A or B ?

Which slide has the steepest gradient?

Where is the gradient largest?

Where is the gradient largest

Recap from Y7

- The gradient of a slope is how much the height (y) increases as the horizontal distance (x) increases.
- The gradient of a graph shows you how quickly the variable on the y axis changes
- A steep slope has a large increase in height over a short horizontal distance. it has a large gradient
- A shallow slope has a small gradient
- The gradient is the rate at which the variable on the y-axis changes with a change on the x-axis.

Checkpoint - 20mins

- Each question is worth 2 marks
- You can use your notes
- Individual in silence

1) Match the hazard symbol to the meaning by drawing a line from each

2) Name the scientific equipment below

3) Which set of data is more precise? Explain using a calculation.

A beaker is weighed on $A, 3$ times:
The readings are: $73 \mathrm{~g}, 77 \mathrm{~g}, 71 \mathrm{~g}$It is then weighed on $\mathrm{B}, 3$ times: A The readings are: $75 \mathrm{~g}, 73 \mathrm{~g}, 74 \mathrm{~g}$

Set B is more precise(1 mark)
Set A Range $=6 \mathrm{~g} \quad$ Set B Range $=2 \mathrm{~g}$ (1 mark)
4) Fill in the gaps using the words below

same	repeatable	different	reproducible	similar

```
                data are measurements that when repeated by
the
```

\qquad

``` person, with the same equipment, give the same or similar results.
```

\qquad

``` people with different equipment.
```

Repeatable
Same
Reproducible
Similar
Different

5/5 = 2marks,$\quad 2-4 / 5=1$ mark
5) Find the mean and uncertainty of the results below
$10.4 \mathrm{~s}, 10.3 \mathrm{~s}, 10.1 \mathrm{~s}$,
Mean $=10.4+10.3+10.1=30.8$ $30.8 / 3=10.31$ mark
Mean = \qquad Uncertainty $=+/-0.15$
Uncertainty $=$ \qquad
6) What does Valid data mean? Explain how an experiment must be designed so that the data collected is val Only change the independent variable (1) Repeat and find the mean (1) \qquad Measure the dependent variable (1) \qquad Control all variables you are not investigating (1)
7) Name the rela Other valid suggestion (1) MAX 2 MARKS

8) Name $\mathbf{3}$ control measures that will reduce the risk of harm in the experiment below

4 Paul is c Googles/Apron/Tongs $=1$ mark $_{\text {together and chlorine }}$ gas is pr
${ }_{\text {Describe }}^{\text {gas is pr }}$ Fume cupboard = 1 mark
used to carry out this experiment.
9) Describe how the gradient changes in the graph below.

The RED line has a larger gradient than the BLUE line.

A big gradient gives a STEEP line

A small gradient gives a SHALLOW line

Which of these lines has the smallest negative gradient?

Which of these lines has the smallest negative

 gradient?
A and D were both POSITIVE gradients

Which of these lines has the smallest negative

 gradient?A and D were both POSITIVE gradients

How to find the Gradient

- We are going to find the gradient of a line between two points.
- We need to divide the DIFFERENCE IN Y by the DIFFERENCE IN X
- (Difference in y$) \div($ Difference in x$)=$ Gradient
- $\Delta y / \Delta x=$ gradient

Gradient of a Straight Line

Gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { Change in } \mathrm{y}}{\text { Change in } \mathrm{x}}$
(-

(f)

For a distance-time graph, speed = gradient

The gradient of a distance-time graph is equal to the (instantaneous) speed.

Time / s

